Problem 409
Nim Extreme
Let n be a positive integer. Consider nim positions where:
- There are n non-empty piles.
- Each pile has size less than 2n.
- No two piles have the same size.
Let W(n) be the number of winning nim positions satisfying the above conditions (a position is winning if the first player has a winning strategy). For example, W(1) = 1, W(2) = 6, W(3) = 168, W(5) = 19764360 and W(100) mod 1 000 000 007 = 384777056.
Find W(10 000 000) mod 1 000 000 007.
极限取石子游戏
记 n为正整数。考虑如下的取石子游戏设计:
- 有n个非空的堆。
- 每个堆的石子数小于2n。
- 没有两堆的石子数相同。
记W(n)是所有设计中必胜态的数目(必胜态是指先手玩家有必胜策略的状态)。例如,W(1) = 1, W(2) = 6, W(3) = 168, W(5) = 19764360,以及W(100) mod 1 000 000 007 = 384777056。
求W(10 000 000) mod 1 000 000 007。