Problem 418
Factorisation triples
Let n be a positive integer. An integer triple (a, b, c) is called a factorisation triple of n if:
- 1 ≤ a ≤ b ≤ c
- a·b·c = n.
Define f(n) to be a + b + c for the factorisation triple (a, b, c) of n which minimises c / a. One can show that this triple is unique.
For example, f(165) = 19, f(100100) = 142 and f(20!) = 4034872.
Find f(43!).
因数三元组
记n是一个正整数。一个整数三元组(a, b, c)被称为n的因数三元组,当满足一下条件:
- 1 ≤ a ≤ b ≤ c
- a·b·c = n.
在n因数三元组(a, b, c)中,取使得c / a最小化的一组,记f(n)是这三个数的和a + b + c。可以验证这样的三元组总是唯一的。
例如f(165) = 19,f(100100) = 142,而f(20!) = 4034872。
求f(43!)。