Problem 421
Prime factors of n15+1
Numbers of the form n15+1 are composite for every integer n > 1.
For positive integers n and m let s(n,m) be defined as the sum of the distinct prime factors of n15+1 not exceeding m.
E.g. 215+1 = 3×3×11×331.
So s(2,10) = 3 and s(2,1000) = 3+11+331 = 345.
Also 1015+1 = 7×11×13×211×241×2161×9091.
So s(10,100) = 31 and s(10,1000) = 483.
Find ∑ s(n,108) for 1 ≤ n ≤ 1011.
n15+1的质因数
可以表示为n15+1的数,对于任意n > 1都是合数。
对于正整数n和m,记s(n,m)为n15+1所有不超过m的不同质因数之和。
例如,215+1 = 3×3×11×331。
因此s(2,10) = 3,而s(2,1000) = 3+11+331 = 345。
同样地,1015+1 = 7×11×13×211×241×2161×9091。
因此s(10,100) = 31而s(10,1000) = 483。
对于1 ≤ n ≤ 1011,求∑ s(n,108)。