0%

Problem 435


Problem 435


Polynomials of Fibonacci numbers

The Fibonacci numbers {fn, n ≥ 0} are defined recursively as fn = fn-1 + fn-2 with base cases f0 = 0 and f1 = 1.

Define the polynomials {Fn, n ≥ 0} as Fn(x) = ∑fixi for 0 ≤ i ≤ n.

For example, F7(x) = x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7, and F7(11) = 268357683.

Let n = 1015. Find the sum [∑0≤x≤100 Fn(x)] mod 1307674368000 (= 15!).


斐波那契数多项式

斐波那契数{fn, n ≥ 0}由递归式fn = fn-1 + fn-2给出,初值是f0 = 0和f1 = 1。

定义多项式{Fn, n ≥ 0}为Fn(x) = ∑fixi,其中0 ≤ i ≤ n。

例如,F7(x) = x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7,而F7(11) = 268357683.

取n = 1015。求[∑0≤x≤100 Fn(x)] mod 1307674368000 (= 15!)。