Problem 450
Hypocycloid and Lattice points
A hypocycloid is the curve drawn by a point on a small circle rolling inside a larger circle. The parametric equations of a hypocycloid centered at the origin, and starting at the right most point is given by:
$$x(t)=(R-r)\cos(t)+r \cos(\frac{R-r}{r}t)$$ $$y(t)=(R-r)\sin(t)-r \sin(\frac{R-r}{r}t)$$
Where R is the radius of the large circle and r the radius of the small circle.
Let $C(R,r)$ be the set of distinct points with integer coordinates on the hypocycloid with radius R and r and for which there is a corresponding value of t such that $\sin(t)$ and $\cos(t)$ are rational numbers.
Let $S(R,r)=\sum_{(x,y) \in C(R,r)}|x|+|y|$ be the sum of the absolute values of the x and y coordinates of the points in $C(R,r)$.
Let $T(N)=\sum_{R=3}^{N} \sum_{r=1}^{\lfloor \frac{R-1}{2} \rfloor}S(R,r)$ be the sum of $S(R,r)$ for R and r positive integers, $R \le N$ and $2r \lt R$.
You are given:
C(3, 1) = {(3, 0), (-1, 2), (-1,0), (-1,-2)}
C(2500, 1000) =
{(2500, 0), (772, 2376), (772, -2376), (516, 1792),(516, -1792), (500, 0), (68, 504), (68, -504),(-1356, 1088), (-1356, -1088), (-1500, 1000), (-1500, -1000)}
Note: (-625, 0) is not an element of C(2500, 1000) because $\sin(t)$ is not a rational number for the corresponding values of t.
S(3, 1) = (|3| + |0|) + (|-1| + |2|) + (|-1| + |0|) + (|-1| + |-2|) = 10
T(3) = 10; T(10) = 524; T(100) = 580442; T(103) = 583108600.
Find T(106).
圆内旋轮线与格点
在大圆内部有一小圆与其相切并不断滚动,由小圆上一点所构成的曲线称为圆内旋轮线。以原点为圆心,以最右侧的点为起点的圆内旋轮线,其参数方程如下所示:
$$x(t)=(R-r)\cos(t)+r \cos(\frac{R-r}{r}t)$$ $$y(t)=(R-r)\sin(t)-r \sin(\frac{R-r}{r}t)$$
其中R是大圆的半径,而r是小圆的半径。
记$C(R,r)$是大小圆半径分别为R和r时落在圆内旋轮线上的格点的集合,且此时对应的t值满足$\sin(t)$和$\cos(t)$都是有理数。
记$S(R,r)=\sum_{(x,y) \in C(R,r)}|x|+|y|$是$C(R,r)$中所有点的坐标绝对值之和。
记$T(N)=\sum_{R=3}^{N} \sum_{r=1}^{\lfloor \frac{R-1}{2} \rfloor}S(R,r)$是满足R和r均为正整数,$R \le N$以及$2r \lt R$的所有$S(R,r)$的和。
已知:
C(3, 1) = {(3, 0), (-1, 2), (-1,0), (-1,-2)}
C(2500, 1000) =
{(2500, 0), (772, 2376), (772, -2376), (516, 1792),(516, -1792), (500, 0), (68, 504), (68, -504),(-1356, 1088), (-1356, -1088), (-1500, 1000), (-1500, -1000)}
注意:(-625, 0)不是C(2500, 1000)中的元素,此时对应的t值不满足$\sin(t)$为有理数。
因此S(3, 1) = (|3| + |0|) + (|-1| + |2|) + (|-1| + |0|) + (|-1| + |-2|) = 10
且已知T(3) = 10;T(10) = 524;T(100) = 580442;T(103) = 583108600。
求T(106)。