Problem 454
Diophantine reciprocals III
In the following equation x, y, and n are positive integers.
$$\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$$
For a limit L we define F(L) as the number of solutions which satisfy x < y ≤ L.
We can verify that F(15) = 4 and F(1000) = 1069.
Find F(1012).
丢番图倒数III
在如下方程中,x、y、n均为正整数。
$$\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$$
我们记上述方程满足x < y ≤ L的解的数目为F(L)。
可以验证F(15) = 4以及F(1000) = 1069。
求F(1012)。