Problem 456
Triangles containing the origin II
Define:
xn = (1248n mod 32323) - 16161
yn = (8421n mod 30103) - 15051
Pn = {(x1, y1), (x2, y2), …, (xn, yn)}
For example, P8 = {(-14913, -6630), (-10161, 5625), (5226, 11896), (8340, -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)}.
Let C(n) be the number of triangles whose vertices are in Pn which contain the origin in the interior.
Examples:
C(8) = 20
C(600) = 8950634
C(40 000) = 2666610948988
Find C(2 000 000).
包含原点的三角形II
我们定义:
xn = (1248n mod 32323) - 16161
yn = (8421n mod 30103) - 15051
Pn = {(x1, y1), (x2, y2), …, (xn, yn)}
例如,P8 = {(-14913, -6630), (-10161, 5625), (5226, 11896), (8340, -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)}.
以Pn中元素为顶点的三角形中,包含有原点在其内部的三角形数目记为C(n)。
例如:
C(8) = 20
C(600) = 8950634
C(40 000) = 2666610948988
求C(2 000 000)。