Problem 466
Distinct terms in a multiplication table
Let P(m,n) be the number of distinct terms in an m×n multiplication table.
For example, a 3×4 multiplication table looks like this:
× | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | 1 | 2 | 3 | 4 |
2 | 2 | 4 | 6 | 8 |
3 | 3 | 6 | 9 | 12 |
There are 8 distinct terms {1,2,3,4,6,8,9,12}, therefore P(3,4) = 8.
You are given that:
P(64,64) = 1263,
P(12,345) = 1998, and
P(32,1015) = 13826382602124302.
Find P(64,1016).
乘法表中的不同项
记P(m,n)是m×n乘法表中不同的项的个数。
下图是一个3×4的乘法表:
× | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | 1 | 2 | 3 | 4 |
2 | 2 | 4 | 6 | 8 |
3 | 3 | 6 | 9 | 12 |
在这个乘法表中有8个不同的项{1,2,3,4,6,8,9,12},因此P(3,4) = 8。
已知:
P(64,64) = 1263,
P(12,345) = 1998,以及
P(32,1015) = 13826382602124302。
求P(64,1016)。