Problem 468
Smooth divisors of binomial coefficients
An integer is called B-smooth if none of its prime factors is greater than B.
Let SB(n) be the largest B-smooth divisor of n.
Examples:
S1(10) = 1
S4(2100) = 12
S17(2496144) = 5712
Define F(n) = ∑1≤B≤n ∑0≤r≤n SB(C(n,r)). Here, C(n,r) denotes the binomial coefficient.
Examples:
F(11) = 3132
F(1 111) mod 1 000 000 993 = 706036312
F(111 111) mod 1 000 000 993 = 22156169
Find F(11 111 111) mod 1 000 000 993.
二项式系数的光滑因数
当一个正整数的所有质因数都不大于 B时,这个整数被称为B-光滑数。
记SB(n)是n的最大的B-光滑因数。
例如:
S1(10) = 1
S4(2100) = 12
S17(2496144) = 5712
记F(n) = ∑1≤B≤n ∑0≤r≤n SB(C(n,r)),其中C(n,r)表示二项式系数。
例如:
F(11) = 3132
F(1 111) mod 1 000 000 993 = 706036312
F(111 111) mod 1 000 000 993 = 22156169
求F(11 111 111) mod 1 000 000 993。