Problem 479
Roots on the Rise
Let ak, bk, and ck represent the three solutions (real or complex numbers) to the expression 1/x = (k/x)2(k+x2) - kx.
For instance, for k = 5, we see that {a5, b5, c5} is approximately {5.727244, -0.363622+2.057397i, -0.363622-2.057397i}.
Let S(n) = Σ (ak+bk)p(bk+ck)p(ck+ak)p for all integers p, k such that 1 ≤ p, k ≤ n.
Interestingly, S(n) is always an integer. For example, S(4) = 51160.
Find S(106) modulo 1 000 000 007.
逐渐增长的根
记ak,bk,ck分别是方程1/x = (k/x)2(k+x2) - kx在复数域内的三个根。
例如,对于k = 5,{a5, b5, c5}的近似值为{5.727244, -0.363622+2.057397i, -0.363622-2.057397i}。
对于任意整数p,k满足1 ≤ p, k ≤ n,记S(n) = Σ (ak+bk)p(bk+ck)p(ck+ak)p。
有趣的是,S(n)永远是个整数。例如,S(4) = 51160。
求S(106) modulo 1 000 000 007。