Problem 494
Collatz prefix families
The Collatz sequence is defined as:
$$a_{i+1} = \frac{a_i}{2} \text{ if }a_i\text{ is even}$$ $$a_{i+1} = 3a_i+1\text{ if }a_i\text{ is odd}$$
The Collatz conjecture states that starting from any positive integer, the sequence eventually reaches the cycle 1,4,2,1….
We shall define the sequence prefix p(n) for the Collatz sequence starting with a1 = n as the sub-sequence of all numbers not a power of 2 (20=1 is considered a power of 2 for this problem). For example:
p(13) = {13, 40, 20, 10, 5}
p(8) = {}
Any number invalidating the conjecture would have an infinite length sequence prefix.
Let Sm be the set of all sequence prefixes of length m. Two sequences {a1, a2, …, am} and {b1, b2, …, bm} in Sm are said to belong to the same prefix family if ai < aj if and only if bi < bj for all 1 ≤ i,j ≤ m.
For example, in S4, {6, 3, 10, 5} is in the same family as {454, 227, 682, 341}, but not {113, 340, 170, 85}.
Let f(m) be the number of distinct prefix families in Sm.
You are given f(5) = 5, f(10) = 55, f(20) = 6771.
Find f(90).
考拉兹前缀族
考拉兹序列是指按如下方式定义的数列:
$$a_{i+1} = \frac{a_i}{2} \text{ 若}a_i\text{是偶数}$$ $$a_{i+1} = 3a_i+1\text{ 若}a_i\text{是奇数}$$
相应地,考拉兹猜想认为,从任何正整数开始,序列最终将进入循环1,4,2,1……
我们定义“序列前缀”p(n)为从a1 = n开始的考拉兹序列的不包含2的幂次的子序列(20=1在此也视为2的幂次)。例如:
p(13) = {13, 40, 20, 10, 5}
p(8) = {}
考拉兹猜想的反例将会有一个无限长的序列前缀。
记Sm为所有长度为m的序列前缀构成的集合。Sm中的两个序列前缀{a1, a2, …, am}和{b1, b2, …, bm}属于同一个前缀族,如果对于任意1 ≤ i,j ≤ m,ai < aj当且仅当bi < bj。
例如,在S4中,{6, 3, 10, 5}和{454, 227, 682, 341}在同一前缀族,而{113, 340, 170, 85}不在该前缀族。
记f(m)为Sm中不同前缀族的数量。
已知f(5) = 5,f(10) = 55,f(20) = 6771。
求f(90)。