Problem 496
Incenter and circumcenter of triangle
Given an integer sided triangle ABC:
Let I be the incenter of ABC.
Let D be the intersection between the line AI and the circumcircle of ABC (A ≠ D).
We define F(L) as the sum of BC for the triangles ABC that satisfy AC = DI and BC ≤ L.
For example, F(15) = 45 because the triangles ABC with (BC,AC,AB) = (6,4,5), (12,8,10), (12,9,7), (15,9,16) satisfy the conditions.
Find F(109).
三角形的内心与外心
对于一个三边长都为整数的三角形ABC:
记I是三角形ABC的内心。
记D是直线AI与三角形ABC的外接圆的交点(异于A)。
记 F(L) 为所有满足AC = DI 且 BC ≤ L 的三角形的BC边边长的和。
例如,F(15) = 45,因为只有三边长(BC,AC,AB) = (6,4,5), (12,8,10), (12,9,7), (15,9,16)的三角形ABC才满足条件。
求F(109)。