Problem 502
Counting Castles
We define a block to be a rectangle with a height of 1 and an integer-valued length. Let a castle be a configuration of stacked blocks.
Given a game grid that is w units wide and h units tall, a castle is generated according to the following rules:
- Blocks can be placed on top of other blocks as long as nothing sticks out past the edges or hangs out over open space.
- All blocks are aligned/snapped to the grid.
- Any two neighboring blocks on the same row have at least one unit of space between them.
- The bottom row is occupied by a block of length w.
- The maximum achieved height of the entire castle is exactly h.
- The castle is made from an even number of blocks.
The following is a sample castle for w=8 and h=5:
Let F(w,h) represent the number of valid castles, given grid parameters w and h.
For example, F(4,2) = 10, F(13,10) = 3729050610636, F(10,13) = 37959702514, and F(100,100) mod 1 000 000 007 = 841913936.
Find F(1012,100) + F(10000,10000) + F(100,1012) mod 1 000 000 007.
城堡计数
我们将高为1、长为整数值的长方形成为方块,而将一系列按特定方式堆叠在一起的方块称为城堡。
在一个宽度为w、高度为h的方阵上,按照如下方式构造城堡
- 方块堆叠过程中不允许悬空或部分处于方阵之外。
- 所有方块都与方阵对齐。
- 在同一行的两个不同方块之间至少有一单位的间隔。
- 最下方的一行必须包括一个长度为w的方块。
- 最高高度恰好等于h。
- 必须由偶数个方块构成。
如下是w=8且h=5时的一个城堡:
给定方阵的参数w和h,记所有有效的城堡数目为F(w,h)。
例如,F(4,2) = 10,F(13,10) = 3729050610636,F(10,13) = 37959702514,以及F(100,100) mod 1 000 000 007 = 841913936。
求F(1012,100) + F(10000,10000) + F(100,1012) mod 1 000 000 007。