0%

Problem 507


Problem 507


Shortest Lattice Vector

Let tn be the tribonacci numbers defined as:
t0=t1=0;
t2=1;
tn=tn1+tn2+tn3 for n3
and let rn=tn mod 107.

For each pair of Vectors Vn=(v1,v2,v3) and Wn=(w1,w2,w3) with
v1=r12n11r12n10,v2=r12n9+r12n8,v3=r12n7·r12n6 and
w1=r12n5r12n4,w2=r12n3+r12n2,w3=r12n1·r12n
we define S(n) as the minimal value of the manhattan length of the vector D=k·Vn+l·Wn measured as
|k·v1+l·w1|+|k·v2+l·w2|+|k·v3+l·w3|
for any integers k and l with (k,l)(0,0).

The first vector pair is (-1, 3, 28), (-11, 125, 40826).
You are given that S(1)=32 and Σn=110S(n)=130762273722.

Find Σn=120000000S(n).


最短向量

记如下数列tn三阶斐波那契数列:
t0=t1=0
t2=1
tn=tn1+tn2+tn3 for n3
并记rn=tn mod 107

向量Vn=(v1,v2,v3)Wn=(w1,w2,w3)分别满足
v1=r12n11r12n10,v2=r12n9+r12n8,v3=r12n7·r12n6
w1=r12n5r12n4,w2=r12n3+r12n2,w3=r12n1·r12n
向量D=k·Vn+l·Wn的曼哈顿长度的计算方式为
|k·v1+l·w1|+|k·v2+l·w2|+|k·v3+l·w3|
对于所有的整数kl(k,l)(0,0),我们记S(n)为向量D的最小曼哈顿长度。

第一对向量V1W1分别是(-1, 3, 28)和(-11, 125, 40826)。
已知S(1)=32,以及Σn=110S(n)=130762273722

Σn=120000000S(n)


Gitalking ...