Problem 511
Sequences with nice divisibility properties
Let Seq(n,k) be the number of positive-integer sequences {ai}1≤i≤n of length n such that:
- n is divisible by ai for 1 ≤ i ≤ n, and
- n + a1 + a2 + … + an is divisible by k.
Examples:
Seq(3,4) = 4, and the 4 sequences are:
{1, 1, 3}
{1, 3, 1}
{3, 1, 1}
{3, 3, 3}
Seq(4,11) = 8, and the 8 sequences are:
{1, 1, 1, 4}
{1, 1, 4, 1}
{1, 4, 1, 1}
{4, 1, 1, 1}
{2, 2, 2, 1}
{2, 2, 1, 2}
{2, 1, 2, 2}
{1, 2, 2, 2}
The last nine digits of Seq(1111,24) are 840643584.
Find the last nine digits of Seq(1234567898765,4321).
拥有良好可整除性的数列
记Seq(n,k)是所有满足下列条件的长为n的正整数序列{ai}1≤i≤n的数目:
- 对于所有1 ≤ i ≤ n,n能够被ai整除,且
- n + a1 + a2 + … + an能被k整除。
举例如下:
Seq(3,4) = 4,这4个数列分别是:
{1, 1, 3}
{1, 3, 1}
{3, 1, 1}
{3, 3, 3}
Seq(4,11) = 8,这8个数列分别是:
{1, 1, 1, 4}
{1, 1, 4, 1}
{1, 4, 1, 1}
{4, 1, 1, 1}
{2, 2, 2, 1}
{2, 2, 1, 2}
{2, 1, 2, 2}
{1, 2, 2, 2}
Seq(1111,24)的最后九位数字是840643584。
求Seq(1234567898765,4321)的最后九位数字。