Problem 515
Dissonant Numbers
Let d(p,n,0) be the multiplicative inverse of n modulo prime p, defined as n × d(p,n,0) = 1 mod p.
Let d(p,n,k) = $\Sigma^n_{i=1}$d(p,i,k?1) for k ≥ 1.
Let D(a,b,k) = $\Sigma$(d(p,p-1,k) mod p) for all primes a ≤ p < a + b.
You are given:
- D(101,1,10) = 45
- D(103,102,102) = 8334
- D(106,103,103) = 38162302
Find D(109,105,105).
不和谐的数
记d(p,n,0)是n在模素数p同余下的乘法逆元,即n × d(p,n,0) = 1 mod p。
记d(p,n,k) = $\Sigma^n_{i=1}$d(p,i,k?1),其中k ≥ 1。
记D(a,b,k) = $\Sigma$(d(p,p-1,k) mod p),对于所有的素数a ≤ p < a + b。
已知:
- D(101,1,10) = 45
- D(103,102,102) = 8334
- D(106,103,103) = 38162302
求D(109,105,105)。