0%

Problem 528


Problem 528


Constrained Sums

Let S(n,k,b) represent the number of valid solutions to x1 + x2 + … + xk ≤ n, where 0 ≤ xm ≤ bm for all 1 ≤ m ≤ k.

For example, S(14,3,2) = 135, S(200,5,3) = 12949440, and S(1000,10,5) mod 1 000 000 007 = 624839075.

Find (∑10 ≤ k ≤ 15 S(10k,k,k)) mod 1 000 000 007.


限制性求和

不等式x1 + x2 + … + xk ≤ n的解中,对于所有1 ≤ m ≤ k均满足0 ≤ xm ≤ bm的解的数目记为S(n,k,b)。

例如,S(14,3,2) = 135,S(200,5,3) = 12949440,以及S(1000,10,5) mod 1 000 000 007 = 624839075。

求(∑10 ≤ k ≤ 15 S(10k,k,k)) mod 1 000 000 007。