Problem 544
Chromatic Conundrum
Let F(r,c,n) be the number of ways to color a rectangular grid with r rows and c columns using at most n colors such that no two adjacent cells share the same color. Cells that are diagonal to each other are not considered adjacent.
For example, F(2,2,3) = 18, F(2,2,20) = 130340, and F(3,4,6) = 102923670.
Let S(r,c,n) = $\sum_{k=1}^{n} F(r,c,k)$.
For example, S(4,4,15) mod 109+7 = 325951319.
Find S(9,10,1112131415) mod 109+7.
彩色谜题
将一个r行c列的长方形格阵用至多n种颜色填色,且相邻两格的颜色互不相同,记总的可行填色数目为F(r,c,n)。对角相接的两格不算作相邻。
例如,F(2,2,3) = 18,F(2,2,20) = 130340, 以及F(3,4,6) = 102923670。
记S(r,c,n) = $\sum_{k=1}^{n} F(r,c,k)$。
例如,S(4,4,15) mod 109+7 = 325951319。
求S(9,10,1112131415) mod 109+7。