Problem 545
Faulhaber’s Formulas
The sum of the kth powers of the first n positive integers can be expressed as a polynomial of degree k+1 with rational coefficients, the Faulhaber’s Formulas:
$$1^k + 2^k + … + n^k = \sum_{i=1}^n i^k = \sum_{i=1}^{k+1} a_{i} n^i = a_{1} n + a_{2} n^2 + … + a_{k} n^k + a_{k+1} n^{k + 1},$$
where ai‘s are rational coefficients that can be written as reduced fractions pi/qi (if ai = 0, we shall consider qi = 1).
For example, $1^4 + 2^4 + … + n^4 = -\frac{1}{30}n + \frac{1}{3}n^3 + \frac{1}{2}n^4 + \frac{1}{5}n^5$.
Define D(k) as the value of q1 for the sum of kth powers (i.e. the denominator of the reduced fraction a1).
Define F(m) as the mth value of k ≥ 1 for which D(k) = 20010.
You are given D(4) = 30 (since a1 = -1/30), D(308) = 20010, F(1) = 308, F(10) = 96404.
Find F(105).
福尔哈贝尔公式
前n个正整数的k次幂的和可以用一个k+1次有理系数多项式来表示,称为福尔哈贝尔公式:
$$1^k + 2^k + … + n^k = \sum_{i=1}^n i^k = \sum_{i=1}^{k+1} a_{i} n^i = a_{1} n + a_{2} n^2 + … + a_{k} n^k + a_{k+1} n^{k + 1},$$
每个系数ai都是有理数,因而可以写成最简形式pi/qi(如果ai = 0,我们约定qi = 1)。
例如,$1^4 + 2^4 + … + n^4 = -\frac{1}{30}n + \frac{1}{3}n^3 + \frac{1}{2}n^4 + \frac{1}{5}n^5$。
记D(k)为k次幂的福尔哈贝尔公式中q1的值(也即a1化简后的分母)。
记F(m)为使得D(k) = 20010的第m个k值。
已知D(4) = 30(因为a1 = -1/30),D(308) = 20010,F(1) = 308,F(10) = 96404。
求F(105)。