Problem 546
The Floor’s Revenge
Define $f_k(n)=\sum^{n}_{i=0}f_k(\lfloor \frac{i}{k} \rfloor)$ where $f_k(0)=1$ and $\lfloor x \rfloor$ denotes the floor function.
For example, f5(10) = 18, f7(100) = 1003, and f2(103) = 264830889564.
Find $(\sum^{10}_{k=2}f_k(10^{14})) \text{ mod } (10^9+7)$.
地板的复仇
记$f_k(n)=\sum^{n}_{i=0}f_k(\lfloor \frac{i}{k} \rfloor)$,其中$f_k(0)=1$ ,$\lfloor x \rfloor$表示地板函数(下取整函数)。
例如,f5(10) = 18,f7(100) = 1003,以及f2(103) = 264830889564。
求$(\sum^{10}_{k=2}f_k(10^{14})) \text{ mod } (10^9+7)$。