0%

Problem 56


Problem 56


Powerful digit sum

A googol ($10^{100}$) is a massive number: one followed by one-hundred zeros; $100^{100}$ is almost unimaginably large: one followed by two-hundred zeros. Despite their size, the sum of the digits in each number is only $1$.

Considering natural numbers of the form, $a^b$, where $a, b<100$, what is the maximum digital sum?


幂的数字和

一古戈尔($10^{100}$)是一个巨大的数字:一后面跟着一百个零。$100^{100}$则更是无法想像地巨大:一后面跟着两百个零。然而,尽管这两个数如此巨大,各位数字和却都只有$1$。

对于$a, b<100$,考虑所有能表示为$a^b$的自然数,其中最大的各位数字和是多少?