Problem 561
Divisor Pairs
Let S(n) be the number of pairs (a,b) of distinct divisors of n such that a divides b.
For n=6 we get the following pairs: (1,2), (1,3), (1,6), (2,6) and (3,6). So S(6)=5.
Let $p_m\#$ be the product of the first m prime numbers, so $p_2\#$ = 2*3 = 6.
Let E(m, n) be the highest integer k such that $2^k$ divides $S((p_m\#)^n)$.
E(2,1) = 0 since $2^0$ is the highest power of 2 that divides S(6)=5.
Let $Q(n)=\sum_{i=1}^{n} E(904961, i)$.
Q(8)=2714886.
Evaluate $Q(10^{12})$.
约数对
记S(n)为n的不同约数组成的约数对(a,b)的数目,其中a整除b。
对于n=6,我们有如下约数对:(1,2),(1,3),(1,6),(2,6)和(3,6)。因此S(6)=5。
记$p_m\#$是前m个素数的乘积,因此$p_2\#$ = 2*3 = 6。
记E(m, n)为使得$2^k$整除$S((p_m\#)^n)$的最大整数k。
已知E(2,1) = 0,因为$2^0$是能够整除S(6)=5的2的幂中最大的数。
记$Q(n)=\sum_{i=1}^{n} E(904961, i)$。
已知Q(8)=2714886。
求$Q(10^{12})$。