Problem 562
Maximal perimeter
Construct triangle ABC such that:
- Vertices A, B and C are lattice points inside or on the circle of radius r centered at the origin;
- the triangle contains no other lattice point inside or on its edges;
- the perimeter is maximum.
Let R be the circumradius of triangle ABC and T(r) = R/r.
For r = 5, one possible triangle has vertices (-4,-3), (4,2) and (1,0) with perimeter $\sqrt{13}+\sqrt{34}+\sqrt{89}$ and circumradius R = $\sqrt {\frac {19669} 2 }$, so T(5) =$\sqrt {\frac {19669} {50} }$.
You are given T(10) ~ 97.26729 and T(100) ~ 9157.64707.
Find T(107). Give your answer rounded to the nearest integer.
最大周长
构造满足如下条件的三角形ABC:
- 顶点A,B和C都是在以原点为圆心,r为半径的圆内或圆周上的格点;
- 三角形内或边上没有其它的格点;
- 周长最大。
记R是三角形ABC的外接圆半径,并记T(r) = R/r。
对于r = 5,一种可能的方案是以(-4,-3),(4,2)和(1,0)为顶点的三角形,周长为$\sqrt{13}+\sqrt{34}+\sqrt{89}$,外接圆半径为R = $\sqrt {\frac {19669} 2 }$,因此T(5) =$\sqrt {\frac {19669} {50} }$。
已知T(10) ~ 97.26729以及T(100) ~ 9157.64707。
求T(107),将你的答案四舍五入到最接近的整数。