0%

Problem 577


Problem 577


Counting hexagons

An equilateral triangle with integer side length n3 is divided into n2 equilateral triangles with side length 1 as shown in the diagram below.
The vertices of these triangles constitute a triangular lattice with (n+1)(n+2)2 lattice points.

Let H(n) be the number of all regular hexagons that can be found by connecting 6 of these points.

p577_counting_hexagons.png

For example, H(3)=1, H(6)=12 and H(20)=966.

Find n=312345H(n).


数六边形

边长为整数n3的等边三角形可以被分成n2个边长为1的小等边三角形,如下图所示。
这些小三角形的(n+1)(n+2)2个顶点构成了一个三角形的格阵。

H(n)为从这些顶点中取6个点构成的正六边形的数目。

p577_counting_hexagons.png

n=3时只有一个六边形

例如,H(3)=1H(6)=12,而H(20)=966

n=312345H(n)


Gitalking ...