Problem 577
Counting hexagons
An equilateral triangle with integer side length $n \ge 3$ is divided into $n^2$ equilateral triangles with side length 1 as shown in the diagram below.
The vertices of these triangles constitute a triangular lattice with $\frac{(n+1)(n+2)} 2$ lattice points.
Let $H(n)$ be the number of all regular hexagons that can be found by connecting 6 of these points.
For example, $H(3)=1$, $H(6)=12$ and $H(20)=966$.
Find $\displaystyle \sum_{n=3}^{12345} H(n)$.
数六边形
边长为整数$n \ge 3$的等边三角形可以被分成$n^2$个边长为1的小等边三角形,如下图所示。
这些小三角形的$\frac{(n+1)(n+2)} 2$个顶点构成了一个三角形的格阵。
记$H(n)$为从这些顶点中取6个点构成的正六边形的数目。
当$n=3$时只有一个六边形
例如,$H(3)=1$,$H(6)=12$,而$H(20)=966$。
求$\displaystyle \sum_{n=3}^{12345} H(n)$。