0%

Problem 588


Problem 588


Quintinomial coefficients

The coefficients in the expansion of (x+1)k are called binomial coefficients.
Analoguously the coefficients in the expansion of (x4+x3+x2+x+1)k are called quintinomial coefficients.
(quintus= Latin for fifth).

Consider the expansion of (x4+x3+x2+x+1)3:
x12+3x11+6x10+10x9+15x8+18x7+19x6+18x5+15x4+10x3+6x2+3x+1
As we can see 7 out of the 13 quintinomial coefficients for k=3 are odd.

Let Q(k) be the number of odd coefficients in the expansion of (x4+x3+x2+x+1)k.
So Q(3)=7.

You are given Q(10)=17 and Q(100)=35.

Find k=118Q(10k).


五项式系数

(x+1)k展开的各项系数被称为二项式系数
类似地,(x4+x3+x2+x+1)k展开的各项系数被称为五项式系数
(quintus是表示“第5”的拉丁语词汇)。

考虑(x4+x3+x2+x+1)3的展开式:
x12+3x11+6x10+10x9+15x8+18x7+19x6+18x5+15x4+10x3+6x2+3x+1
我们可以看出,当k=3时,13个五项式系数中有7个是奇数。

Q(k)表示(x4+x3+x2+x+1)k的展开式的系数中奇数的数目。
因此Q(3)=7

已知Q(10)=17以及Q(100)=35

k=118Q(10k)


Gitalking ...