Problem 588
Quintinomial coefficients
The coefficients in the expansion of $(x+1)^k$ are called binomial coefficients.
Analoguously the coefficients in the expansion of $(x^4+x^3+x^2+x+1)^k$ are called quintinomial coefficients.
(quintus= Latin for fifth).
Consider the expansion of $(x^4+x^3+x^2+x+1)^3$:
$x^{12}+3x^{11}+6x^{10}+10x^9+15x^8+18x^7+19x^6+18x^5+15x^4+10x^3+6x^2+3x+1$
As we can see 7 out of the 13 quintinomial coefficients for $k=3$ are odd.
Let $Q(k)$ be the number of odd coefficients in the expansion of $(x^4+x^3+x^2+x+1)^k$.
So $Q(3)=7$.
You are given $Q(10)=17$ and $Q(100)=35$.
Find $\sum_{k=1}^{18}Q(10^k)$.
五项式系数
$(x+1)^k$展开的各项系数被称为二项式系数。
类似地,$(x^4+x^3+x^2+x+1)^k$展开的各项系数被称为五项式系数。
(quintus是表示“第5”的拉丁语词汇)。
考虑$(x^4+x^3+x^2+x+1)^3$的展开式:
$x^{12}+3x^{11}+6x^{10}+10x^9+15x^8+18x^7+19x^6+18x^5+15x^4+10x^3+6x^2+3x+1$
我们可以看出,当$k=3$时,13个五项式系数中有7个是奇数。
令$Q(k)$表示$(x^4+x^3+x^2+x+1)^k$的展开式的系数中奇数的数目。
因此$Q(3)=7$。
已知$Q(10)=17$以及$Q(100)=35$。
求$\sum_{k=1}^{18}Q(10^k)$。