Problem 593
Fleeting Medians
We define two sequences $S = {S(1), S(2), …, S(n)}$ and $S_2 = {S_2(1), S_2(2), …, S_2(n)}$:
$S(k) = (p_k)^k$ mod $10007$ where $p_k$ is the $k$th prime number.
$S_2(k) = S(k) + S(\lfloor\frac{k}{10000}\rfloor + 1)$ where $\lfloor \cdot \rfloor$ denotes the floor function.
Then let $M(i, j)$ be the median of elements $S_2(i)$ through $S_2(j)$, inclusive. For example, $M(1, 10) = 2021.5$ and $M(10^2, 10^3) = 4715.0$.
Let $F(n, k) = \sum_{i=1}^{n-k+1} M(i, i + k - 1)$. For example, $F(100, 10) = 463628.5$ and $F(10^5, 10^4) = 675348207.5$.
Find $F(10^7, 10^5)$. If the sum is not an integer, use $.5$ to denote a half. Otherwise, use $.0$ instead.
快速中位数
我们定义两个序列$S = {S(1), S(2), …, S(n)}$和$S_2 = {S_2(1), S_2(2), …, S_2(n)}$:
$S(k) = (p_k)^k$ mod $10007$,其中$p_k$是第$k$个素数。
$S_2(k) = S(k) + S(\lfloor\frac{k}{10000}\rfloor + 1)$,其中$\lfloor \cdot \rfloor$表示下取整函数。
然后记$M(i, j)$为从$S_2(i)$到$S_2(j)$(含)的中位数。例如,$M(1, 10) = 2021.5$,而$M(10^2, 10^3) = 4715.0$。
记$F(n, k) = \sum_{i=1}^{n-k+1} M(i, i + k - 1)$。例如,$F(100, 10) = 463628.5$,而$F(10^5, 10^4) = 675348207.5$。
求$F(10^7, 10^5)$。如果这个和值不是整数,用$.5$表示,否则用$.0$表示。