0%

Problem 594


Problem 594


Rhombus Tilings

For a polygon P, let t(P) be the number of ways in which P can be tiled using rhombi and squares with edge length 1. Distinct rotations and reflections are counted as separate tilings.

For example, if O is a regular octagon with edge length 1, then t(O)=8. As it happens, all these 8 tilings are rotations of one another:

p594_octagon_tilings_1.png

Let Oa,b be the equal-angled convex octagon whose edges alternate in length between a and b.
For example, here is O2,1, with one of its tilings:

p594_octagon_tilings_2.png

You are given that t(O1,1)=8, t(O2,1)=76 and t(O3,2)=456572.

Find t(O4,2).


菱形地砖

对于多边形P,记t(P)为用边长为1的菱形和正方形地砖铺满P的方法数。旋转和翻转后相同的铺法视为不同的铺法。

例如,如果用O表示一个边长为1的正八边形,那么t(O)=8。事实上,这8种铺法都可以通过旋转相互得到:

p594_octagon_tilings_1.png

Oa,b表示边长交替为ab的等角凸八边形。
例如,如下是O2,1和其中一种铺法:

p594_octagon_tilings_2.png

已知t(O1,1)=8t(O2,1)=76,以及t(O3,2)=456572

t(O4,2)


Gitalking ...