Problem 600
Integer sided equiangular hexagons
Let $H$($n$) be the number of distinct integer sided equiangular convex hexagons with perimeter not exceeding $n$.
Hexagons are distinct if and only if they are not congruent.
You are given $H$(6)=1, $H$(12)=10, $H$(100)=31248.
Find $H$(55106).
Equiangular hexagons with perimeter not exceeding 12
整数边长等角六边形
令$H$($n$)表示周长不超过$n$的不同整数边长等角凸六边形的数量。
当且仅当两个六边形不全等时视为不同的六边形。
已知$H$(6)=1,$H$(12)=10,$H$(100)=31248。
求$H$(55106)。
边长不超过12的等角六边形