Problem 604
Convex path in square
Let $F(N)$ be the maximum number of lattice points in an axis-aligned $N\times N$ square that the graph of a single strictly convex increasing function can pass through.
You are given that $F(1) = 2$, $F(3) = 3$, $F(9) = 6$, $F(11) = 7$, $F(100) = 30$ and $F(50000) = 1898$.
Below is the graph of a function reaching the maximum 3 for $N=3$:
Find $F(10^{18})$.
正方形中的凹路径
记$F(N)$为,在一个和坐标系对齐的$N\times N$正方形中,一个严格凹单调增函数所能够穿过的格点数目最大值。
已知$F(1) = 2$,$F(3) = 3$,$F(9) = 6$,$F(11) = 7$,$F(100) = 30$以及$F(50000) = 1898$。
以下是$N=3$时达成最大值的函数图象:
求$F(10^{18})$。