Problem 606
Gozinta Chains II
A gozinta chain for n is a sequence {1,a,b,…,n} where each element properly divides the next.
For example, there are eight distinct gozinta chains for 12:
{1,12}, {1,2,12}, {1,2,4,12}, {1,2,6,12}, {1,3,12}, {1,3,6,12}, {1,4,12} and {1,6,12}.
Let S(n) be the sum of all numbers, k, not exceeding n, which have 252 distinct gozinta chains.
You are given S(106)=8462952 and S(1012)=623291998881978.
Find S(1036), giving the last nine digits of your answer.
因子链II
n的因子链指的是一个序列{1,a,b,…,n},其中每个元素都整除后一个元素。
例如,12有八条因子链:
{1,12},{1,2,12},{1,2,4,12},{1,2,6,12},{1,3,12},{1,3,6,12},{1,4,12}和{1,6,12}。
对于任意n,将所有不超过于n且恰好有252条不同因子链的整数k的和记为S(n)。
已知S(106)=8462952,而S(1012)=623291998881978。
求S(1036),并给出其最后九位数字。