Problem 609
$\pi$ sequences
For every $n \ge 1$ the prime-counting function $\pi(n)$ is equal to the number of primes not exceeding $n$.
E.g. $\pi(6)=3$ and $\pi(100)=25$.
We say that a sequence of integers $u = (u_0,\cdots,u_m)$ is a $\pi$ sequence if
- $u_n \ge 1$ for every $n$
- $u_{n+1}= \pi(u_n)$
- $u$ has two or more elements
For $u_0=10$ there are three distinct $\pi$ sequences: (10,4), (10,4,2) and (10,4,2,1).
Let $c(u)$ be the number of elements of $u$ that are not prime.
Let $p(n,k)$ be the number of $\pi$ sequences $u$ for which $u_0\le n$ and $c(u)=k$.
Let $P(n)$ be the product of all $p(n,k)$ that are larger than 0.
You are given: P(10)=3×8×9×3=648 and P(100)=31038676032.
Find $P(10^8)$. Give your answer modulo 1000000007.
$\pi$序列
对于任意$n \ge 1$,素数计数函数$\pi(n)$表示不超过$n$的素数数目。
例如,$\pi(6)=3$以及$\pi(100)=25$。
我们称序列$u = (u_0,\cdots,u_m)$为$\pi$序列,如果
- 对于任意$n$,$u_n \ge 1$
- $u_{n+1}= \pi(u_n)$
- $u$中包含至少两个元素
对于$u_0=10$,有三个不同的$\pi$序列:(10,4),(10,4,2)和(10,4,2,1)。
记$c(u)$为序列$u$中非素数元素的数目。
记$p(n,k)$为满足$u_0\le n$和$c(u)=k$的$\pi$序列$u$的数目。
记$P(n)$为所有大于0的$p(n,k)$的乘积。
已知:P(10)=3×8×9×3=648以及P(100)=31038676032。
求$P(10^8)$,并将答案对1000000007取模。