Problem 619
Square subsets
For a set of positive integers ${a,a+1,a+2,\ldots,b}$, let $C(a,b)$ be the number of non-empty subsets in which the product of all elements is a perfect square.
For example $C(5,10)=3$, since the products of all elements of ${5,8,10}$, ${5,8,9,10}$ and ${9}$ are perfect squares, and no other subsets of ${5,6,7,8,9,10}$ have this property.
You are given that $C(40,55)=15$, and $C(1000,1234)\text{ mod }1000000007=975523611$.
Find $C(1000000,1234567)\text{ mod }1000000007$.
平方子集
对于正整数集${a,a+1,a+2,\ldots,b}$,记$C(a,b)$为其非空子集中满足所有元素之积为完全平方数的子集的数目。
例如,$C(5,10)=3$,因为除了${5,8,10}$,${5,8,9,10}$和${9}$中所有元素之积为完全平方数外,不存在其它${5,6,7,8,9,10}$的子集满足这一性质。
已知$C(40,55)=15$,以及$C(1000,1234)\text{ mod }1000000007=975523611$。
求$C(1000000,1234567)\text{ mod }1000000007$。