Problem 632
Square prime factors
For an integer $n$, we define the square prime factors of $n$ to be the primes whose square divides $n$. For example, the square prime factors of $1500 = 2^2 \times 3 \times 5^3$ are $2$ and $5$.
Let $C_k(N)$ be the number of integers between $1$ and $N$ inclusive with exactly $k$ square prime factors. You are given some values of $C_k(N)$ in the table below.
$k=0$ | $k=1$ | $k=2$ | $k=3$ | $k=4$ | $k=5$ | |
---|---|---|---|---|---|---|
$N=10$ | $7$ | $3$ | $0$ | $0$ | $0$ | $0$ |
$N=10^2$ | $61$ | $36$ | $3$ | $0$ | $0$ | $0$ |
$N=10^3$ | $608$ | $343$ | $48$ | $1$ | $0$ | $0$ |
$N=10^4$ | $6083$ | $3363$ | $533$ | $21$ | $0$ | $0$ |
$N=10^5$ | $60794$ | $33562$ | $5345$ | $297$ | $2$ | $0$ |
$N=10^6$ | $607926$ | $335438$ | $53358$ | $3218$ | $60$ | $0$ |
$N=10^7$ | $6079291$ | $3353956$ | $533140$ | $32777$ | $834$ | $2$ |
$N=10^8$ | $60792694$ | $33539196$ | $5329747$ | $329028$ | $9257$ | $78$ |
Find the product of all non-zero $C_k(10^{16})$. Give the result reduced modulo $1\ 000\ 000\ 007$.
平方质因数
对于整数$n$,称平方后能整除$n$的质数为$n$的平方质因数。例如,$1500 = 2^2 \times 3 \times 5^3$的平方质因数包括$2$和$5$。
记$C_k(N)$为$1$与$N$之间(含$1$和$N$)恰好有$k$个平方质因数的整数之和。下表给出了部分$C_k(N)$的取值:
$k=0$ | $k=1$ | $k=2$ | $k=3$ | $k=4$ | $k=5$ | |
---|---|---|---|---|---|---|
$N=10$ | $7$ | $3$ | $0$ | $0$ | $0$ | $0$ |
$N=10^2$ | $61$ | $36$ | $3$ | $0$ | $0$ | $0$ |
$N=10^3$ | $608$ | $343$ | $48$ | $1$ | $0$ | $0$ |
$N=10^4$ | $6083$ | $3363$ | $533$ | $21$ | $0$ | $0$ |
$N=10^5$ | $60794$ | $33562$ | $5345$ | $297$ | $2$ | $0$ |
$N=10^6$ | $607926$ | $335438$ | $53358$ | $3218$ | $60$ | $0$ |
$N=10^7$ | $6079291$ | $3353956$ | $533140$ | $32777$ | $834$ | $2$ |
$N=10^8$ | $60792694$ | $33539196$ | $5329747$ | $329028$ | $9257$ | $78$ |
求出所有非零的$C_k(10^{16})$的乘积,并将结果对$1\ 000\ 000\ 007$取余。