Problem 633
Square prime factors II
For an integer $n$, we define the square prime factors of $n$ to be the primes whose square divides $n$. For example, the square prime factors of $1500 = 2^2 \times 3 \times 5^3$ are $2$ and $5$.
Let $C_k(N)$ be the number of integers between $1$ and $N$ inclusive with exactly $k$ square prime factors. It can be shown that with growing $N$ the ratio $\frac{C_k(N)}{N}$ gets arbitrarily close to a constant $c_k^\infty$, as suggested by the table below.
$k=0$ | $k=1$ | $k=2$ | $k=3$ | $k=4$ | |
---|---|---|---|---|---|
$C_k(10)$ | $7$ | $3$ | $0$ | $0$ | $0$ |
$C_k(10^2)$ | $61$ | $36$ | $3$ | $0$ | $0$ |
$C_k(10^3)$ | $608$ | $343$ | $48$ | $1$ | $0$ |
$C_k(10^4)$ | $6083$ | $3363$ | $533$ | $21$ | $0$ |
$C_k(10^5)$ | $60794$ | $33562$ | $5345$ | $297$ | $2$ |
$C_k(10^6)$ | $607926$ | $335438$ | $53358$ | $3218$ | $60$ |
$C_k(10^7)$ | $6079291$ | $3353956$ | $533140$ | $32777$ | $834$ |
$C_k(10^8)$ | $60792694$ | $33539196$ | $5329747$ | $329028$ | $9257$ |
$C_k(10^9)$ | $607927124$ | $335389706$ | $53294365$ | $3291791$ | $95821$ |
$c_k^\infty$ | $\frac{6}{\pi^2}$ | $3.3539\times 10^{-1}$ | $5.3293\times 10^{-2}$ | $3.2921\times 10^{-3}$ | $9.7046\times 10^{-5} |
Find $c_7^\infty$. Give the result in scientific notation rounded to $5$ significant digits, using a $e$ to seperate mantissa and exponent. E.g., if the answer were $0.000123456789$, then the answer format would be $1.2346e-4$.
平方质因数II
对于整数$n$,称平方后能整除$n$的质数为$n$的平方质因数。例如,$1500 = 2^2 \times 3 \times 5^3$的平方质因数包括$2$和$5$。
记$C_k(N)$为$1$与$N$之间(含$1$和$N$)恰好有$k$个平方质因数的整数之和。可以发现,随着$N$不断增大,比值$\frac{C_k(N)}{N}$逐渐趋向于一个常数$c_k^\infty$,如下表所示:
$k=0$ | $k=1$ | $k=2$ | $k=3$ | $k=4$ | $k=5$ | |
---|---|---|---|---|---|---|
$N=10$ | $7$ | $3$ | $0$ | $0$ | $0$ | $0$ |
$N=10^2$ | $61$ | $36$ | $3$ | $0$ | $0$ | $0$ |
$N=10^3$ | $608$ | $343$ | $48$ | $1$ | $0$ | $0$ |
$N=10^4$ | $6083$ | $3363$ | $533$ | $21$ | $0$ | $0$ |
$N=10^5$ | $60794$ | $33562$ | $5345$ | $297$ | $2$ | $0$ |
$N=10^6$ | $607926$ | $335438$ | $53358$ | $3218$ | $60$ | $0$ |
$N=10^7$ | $6079291$ | $3353956$ | $533140$ | $32777$ | $834$ | $2$ |
$N=10^8$ | $60792694$ | $33539196$ | $5329747$ | $329028$ | $9257$ | $78$ |
求$c_7^\infty$,并将结果用科学计数法表示,保留5位有效数字,尾数和指数间用$e$分隔。例如,如果结果是$0.000123456789$,则应当回答$1.2346e-4$。