Problem 637
Flexible digit sum
Given any positive integer $n$, we can construct a new integer by inserting plus signs between some of the digits of the base $B$ representation of $n$, and then carrying out the additions.
For example, from $n=123_{10}$ ($n$ in base $10$) we can construct the four base $10$ integers $123_{10}$, $1+23 =24_{10}$, $12+3=15_{10}$ and $1+2+3=6_{10}$.
Let $f(n,B)$ be the smallest number of steps needed to arrive at a single-digit number in base $B$. For example, $f(7,10)=0$ and $f(123,10)=1$.
Let $g(n,B_1,B_2)$ be the sum of the positive integers $i$ not exceeding $n$ such that $f(i,B_1)=f(i,B_2)$.
You are given $g(100,10,3)=3302$.
Find $g(10^7,10,3)$.
灵活的数字和
给定任意正整数$n$,我们可以通过在$n$的$B$进制表示中插入加号,并计算加法的结果,来构造新的整数。
例如,从$n=123_{10}$ ($10$进制表示的$n$)出发,我们能够构造四个$10$进制整数:$123_{10}$,$1+23 =24_{10}$,$12+3=15_{10}$和$1+2+3=6_{10}$。
记$f(n,B)$为将$B$进制下的$n$变为一位数所需的最少步数。例如,$f(7,10)=0$而$f(123,10)=1$。
记$g(n,B_1,B_2)$为所有小于等于$n$且满足$f(i,B_1)=f(i,B_2)$的正整数$i$之和。
已知$g(100,10,3)=3302$。
求$g(10^7,10,3)$。