Problem 638
Weighted lattice paths
Let $P_{a.b}$ denote a path in a $a\times b$ lattice grid with following properties:
- The path begins at $(0,0)$ and ends at $(a,b)$.
- The path consists only of unit moves upwards or to the right; that is the coordinates are increasing with every move.
Denote $A(P_{a,b})$ to be the area under the path. For the example of a $P_{4,3}$ path given below, the area equals $6$.
Define $G(P_{a,b},k)=k^{A(P_{a,b})}$. Let $C(a,b,k)$ equal the sum of $G(P_{a,b},k)$ over all valid paths in a $a\times b$ lattice grid.
You are given that
- $C(2,2,1)=6$
- $C(2,2,2)=6$
- $C(10,10,1)=184\ 756$
- $C(15,10,3)\equiv 880\ 419\ 838 \mod 1\ 000\ 000\ 007$
- $C(10\ 000,10\ 000,4)\equiv 395\ 913\ 804 \mod 1\ 000\ 000\ 007$
Calculate $\sum_{k=1}^7 C(10^k+k,10^k+k,k)$. Give your answer modulo $1\ 000\ 000\ 007$.
带权格阵路径
记$P_{a.b}$为$a\times b$格阵中满足如下性质的路径:
- 路径从$(0,0)$开始,到$(a,b)$结束。
- 路径只能沿着格阵每次向上或向右走一步;也就是说,每一步都只能使横、纵坐标增加而不能减少。
记$A(P_{a,b})$为路径下方区域的面积。以下图给出的一条$P_{4,3}$路径为例,其下方区域的面积为$6$。
记$G(P_{a,b},k)=k^{A(P_{a,b})}$。记 $C(a,b,k)$为$a\times b$格阵中所有满足上述条件的路径所对应的$G(P_{a,b},k)$之和。
已知
- $C(2,2,1)=6$
- $C(2,2,2)=6$
- $C(10,10,1)=184\ 756$
- $C(15,10,3)\equiv 880\ 419\ 838 \mod 1\ 000\ 000\ 007$
- $C(10\ 000,10\ 000,4)\equiv 395\ 913\ 804 \mod 1\ 000\ 000\ 007$
求$\sum_{k=1}^7 C(10^k+k,10^k+k,k)$,并将答案对$1\ 000\ 000\ 007$取余。