Problem 648
Skipping Squares
For some fixed $\rho\in[0,1]$, we begin a sum $s$ at $0$ and repeatedly apply a process: With probability $\rho$, we add $1$ to $s$, otherwise we add $2$ to $s$.
The process ends when either $s$ is a perfect square or $s$ exceeds $10^{18}$, whichever occurs first. For example, if $s$ goes through $0,2,3,5,7,9$, the process ends at $s=9$, and two squares $1$ and $4$ were skipped over.
Let $f(\rho)$ be the expected number of perfect squares skipped over when the process finishes.
It can be shown that the power series for $f(\rho)$ is $\sum_{k=0}^{\infty}a_k\rho^k$ for a suitable (unique) choice of coefficients $a_k$. Some of the first few coefficients are $a_0=1$,
$a_1=0$, $a_5=-18$, $a_{10}=45176$.
Let $F(n)=\sum_{k=0}^na_k$. You are given that $F(10)=53964$ and $F(50)\equiv 842418857\pmod{10^9}$.
Find $F(1000)$, and give your answer modulo $10^9$.
平方跳跃
对于给定的$\rho\in[0,1]$,我们对变量$s$从$0$开始进行如下操作:以概率$\rho$我们给$s$加$1$,否则我们给$s$加$2$。
我们不断重复上述操作,直到$s$是一个完全平方数或者$s$超过了$10^{18}$。例如,如果$s$的取值依次为$0,2,3,5,7,9$,那么我们在$s=9$时停止操作,此时有两个完全平方数$1$和$4$被跳过了。
记$f(\rho)$为在操作结束前,被跳过的完全平方数的期望数目。
可以证明,$f(\rho)$可以唯一地表示成幂级数展开的形式$\sum_{k=0}^{\infty}a_k\rho^k$,其中系数的前几项分别是$a_0=1$,$a_1=0$,$a_5=-18$,$a_{10}=45176$。
记$F(n)=\sum_{k=0}^na_k$。已知$F(10)=53964$,$F(50)\equiv 842418857\pmod{10^9}$。
求$F(1000)$,并将你的答案对$10^9$取余。