Problem 655
Divisible Palindromes
The numbers $545$, $5\ 995$ and $15\ 151$ are the three smallest palindromes divisible by $109$. There are nine palindromes less than $100\ 000$ which are divisible by $109$.
How many palindromes less than $10^{32}$ are divisible by $10\ 000\ 019$?
可除尽的回文数
$545$,$5\ 995$和$15\ 151$是最小的三个能被$109$除尽的回文数。在所有小于$100\ 000$的回文数中,有九个能够被$109$除尽。
在所有小于$10^{32}$的回文数中,有多少个能够被$10\ 000\ 019$整除?