Problem 659
Largest prime
Consider the sequence $n^2+3$ with $n \ge 1$.
If we write down the first terms of this sequence we get:
$4, 7, 12, 19, 28, 39, 52, 67, 84, 103, 124, 147, 172, 199, 228, 259, 292, 327, 364,\ldots$
We see that the terms for $n=6$ and $n=7$ ($39$ and $52$) are both divisible by $13$.
In fact $13$ is the largest prime dividing any two successive terms of this sequence.
Let $P(k)$ be the largest prime that divides any two successive terms of the sequence $n^2+k^2$.
Find the last $18$ digits of $\displaystyle \sum_{k=1}^{10,000,000} P(k)$.
最大的素数
考虑序列$n^2+3$,其中$n \ge 1$,该序列的一开始几项分别是:
$4, 7, 12, 19, 28, 39, 52, 67, 84, 103, 124, 147, 172, 199, 228, 259, 292, 327, 364,\ldots$
可以看出,$n=6$和$n=7$所对应的项($39$和$52$)均能被$13$整除。
实际上,$13$是能够整除该序列相邻两项的最大的素数。
对于序列$n^2+k^2$,记$P(k)$为能够整除该序列相邻两项的最大的素数。
求$\displaystyle \sum_{k=1}^{10,000,000} P(k)$的最后$18$位数字。