Problem 682
$5$-Smooth Pairs
$5$-smooth numbers are numbers whose largest prime factor doesn’t exceed $5$.
$5$-smooth numbers are also called Hamming numbers.
Let $\Omega(a)$ be the count of prime factors of $a$ (counted with multiplicity).
Let $s(a)$ be the sum of the prime factors of $a$ (with multiplicity).
For example, $\Omega(300) = 5$ and $s(300) = 2+2+3+5+5 = 17$.
Let $f(n)$ be the number of pairs, $(p,q)$, of Hamming numbers such that $\Omega(p)=\Omega(q)$ and $s(p)+s(q)=n$.
You are given $f(10)=4$ (the pairs are $(4,9),(5,5),(6,6),(9,4)$) and $f(10^2)=3629$.
Find $f(10^7) \bmod 1\ 000\ 000\ 007$.
$5$-光滑数对
$5$-光滑数是指最大质因数不超过$5$的数。
$5$-光滑数也被称为汉明数。
记$\Omega(a)$为$a$的质因数数目(包括重复的质因数)。
记$s(a)$为$a$的质因数之和(包括重复的质因数)。
例如,$\Omega(300) = 5$,$s(300) = 2+2+3+5+5 = 17$。
记$f(n)$为所有满足$\Omega(p)=\Omega(q)$和$s(p)+s(q)=n$的汉明数对$(p,q)$的数目。
已知$f(10)=4$(包括$(4,9),(5,5),(6,6),(9,4)$),$f(10^2)=3629$。
求$f(10^7) \bmod 1\ 000\ 000\ 007$。