Problem 693
Finite Sequence Generator
Two positive integers $x$ and $y$ ($x>y$) can generate a sequence in the following manner:
- $a_x = y$ is the first term,
- $a_{z+1} = a_z^2 \bmod z$ for $z = x, x+1,x+2,\ldots$ and
- the generation stops when a term becomes $0$ or $1$.
The number of terms in this sequence is denoted $l(x,y)$.
For example, with $x = 5$ and $y = 3$, we get $a_5 = 3$, $a_6 = 3^2 \bmod 5 = 4$, $a_7 = 4^2\bmod 6 = 4$, etc. Giving the sequence of $29$ terms:
$3,4,4,2,4,7,9,4,4,3,9,6,4,16,4,16,16,4,16,3,9,6,10,19,25,16,16,8,0$
Hence $l(5,3) = 29$.
$g(x)$ is defined to be the maximum value of $l(x,y)$ for $y<x$. For example, $g(5) = 29$.
Further, define $f(n)$ to be the maximum value of $g(x)$ for $x \le n$. For example, $f(100) = 145$ and $f(10\ 000) = 8824$.
Find $f(3\ 000\ 000)$.
有限数列生成器
对两个任意正整数$x$和$y$(其中$x>y$),可以按照如下方式生成数列:
- 数列的第一项为$a_x = y$;
- 对于$z = x, x+1,x+2,\ldots$,令$a_{z+1} = a_z^2 \bmod z$;
- 当某一项为$0$或$1$时停止。
当序列停止时,记$l(x,y)$为此时序列中的项数。
例如,若$x = 5$而$y = 3$,那么依次生成的项分别是$a_5 = 3$,$a_6 = 3^2 \bmod 5 = 4$,$a_7 = 4^2\bmod 6 = 4$,依此类推,前$29$项分别是:
$3,4,4,2,4,7,9,4,4,3,9,6,4,16,4,16,16,4,16,3,9,6,10,19,25,16,16,8,0$
因此$l(5,3) = 29$。
记$g(x)$在所有$y<x$中$l(x,y)$的最大值。例如,$g(5) = 29$。
记$f(n)$为所有$x\le n$中$g(x)$的最大值。例如,$f(100) = 145$,$f(10\ 000) = 8824$。
求$f(3\ 000\ 000)$。