Problem 694
Cube-full Divisors
A positive integer $n$ is considered cube-full, if for every prime $p$ that divides $n$, so does $p^3$. Note that $1$ is considered cube-full.
Let $s(n)$ be the function that counts the number of cube-full divisors of $n$. For example, $1$, $8$ and $16$ are the three cube-full divisors of $16$. Therefore, $s(16)=3$.
Let $S(n)$ represent the summatory function of $s(n)$, that is $S(n)=\displaystyle\sum_{i=1}^n s(i)$.
You are given $S(16) = 19$, $S(100) = 126$ and $S(10000) = 13344$.
Find $S(10^{18})$.
满立方约数
考虑正整数$n$,若对于任意整除$n$的质数$p$,总有$p^3$也整除$n$,则称$n$为满立方数。作为特例,$1$也是满立方数。
记$s(n)$为$n$的所有约数中满立方数的数目。例如,$16$的约数中有$1$、$8$和$16$三个满立方数,因此$s(16)=3$。
记$S(n)$为$s(n)$的部分和函数,也即$S(n)=\displaystyle\sum_{i=1}^n s(i)$。
已知$S(16) = 19$,$S(100) = 126$,$S(10000) = 13344$。
求$S(10^{18})$。