Problem 700
Eulercoin
Leonhard Euler was born on $15$ April $1707$.
Consider the sequence $1504170715041707n \bmod 4503599627370517$.
An element of this sequence is defined to be an Eulercoin if it is strictly smaller than all previously found Eulercoins.
For example, the first term is $1504170715041707$ which is the first Eulercoin. The second term is $3008341430083414$ which is greater than $1504170715041707$ so is not an Eulercoin. However, the third term is $8912517754604$ which is small enough to be a new Eulercoin.
The sum of the first $2$ Eulercoins is therefore $1513083232796311$.
Find the sum of all Eulercoins.
欧拉币
莱昂哈德·欧拉出生于$1707$年四月$15$日。
考虑序列$1504170715041707n \bmod 4503599627370517$。
该序列中的某个元素被定义为欧拉币,当且仅当它严格小于之前已经定义的所有欧拉币。
例如,序列的第一项是$1504170715041707$,这是第一枚欧拉币。序列的第二项是$3008341430083414$,因为它大于$1504170715041707$,因此它不是欧拉币。然后,序列的第三项是$8912517754604$,比第一项要小,因此是一枚新的欧拉币。
因此,前$2$枚欧拉币之和为$1513083232796311$。
求所有欧拉币之和。