Problem 701
Random connected area
Consider a rectangle made up of $W \times H$ square cells each with area $1$.
Each cell is independently coloured black with probability $0.5$ otherwise white. Black cells sharing an edge are assumed to be connected.
Consider the maximum area of connected cells.
Define $E(W,H)$ to be the expected value of this maximum area. For example, $E(2,2)=1.875$, as illustrated below.
You are also given $E(4, 4) = 5.76487732$, rounded to $8$ decimal places.
Find $E(7, 7)$, rounded to $8$ decimal places.
随机连通区域
考虑由$W \times H$个面积为$1$的正方形方格组成的长方形。
每一格正方形独立地以$0.5$的概率染上黑色或白色。如果两个黑色正方形格共用一条边,则认为它们是连通的。
考虑最大连通区域的面积。
记$E(W,H)$为最大连通区域的面积的期望值。例如,$E(2,2)=1.875$,如下图所示(其中数字表示最大连通区域的面积)。
已知$E(4, 4) = 5.76487732$,保留$8$位小数。
求$E(7, 7)$并保留$8$位小数。