Problem 706
$3$-Like Numbers
For a positive integer $n$, define $f(n)$ to be the number of non-empty substrings of $n$ that are divisible by $3$. For example, the string “$2573$” has $10$ non-empty substrings, three of which represent numbers that are divisible by $3$, namely $57$, $573$ and $3$. So $f(2573) = 3$.
If $f(n)$ is divisible by $3$ then we say that $n$ is $3$-like.
Define $F(d)$ to be how many $d$ digit numbers are $3$-like. For example, $F(2) = 30$ and $F(6) = 290898$.
Find $F(10^5)$. Give your answer modulo $1\ 000\ 000\ 007$.
$3$似数
将正整数$n$视为数字串,记$f(n)$为能被$3$整除的$n$的非空子串数目。例如,数字串”$2573$”有$10$个非空子串,其中有三个能被$3$整除,分别是$57$、$573$和$3$,因此$f(2573) = 3$。
如果$f(n)$能被$3$整除,则称$n$为$3$似数。
记$F(d)$为$d$位数中$3$似数的个数。例如,$F(2) = 30$,$F(6) = 290898$。
求$F(10^5)$并将你的答案对$1\ 000\ 000\ 007$取余。