Problem 708
Twos are all you need
A positive integer, $n$, is factorised into prime factors. We define $f(n)$ to be the product when each prime factor is replaced with $2$. In addition we define $f(1)=1$.
For example, $90 = 2\times 3\times 3\times 5$, then replacing the primes, $2\times 2\times 2\times 2 = 16$, hence $f(90) = 16$.
Let $\displaystyle S(N)=\sum_{n=1}^{N} f(n)$. You are given $S(10^8)=9613563919$.
Find $S(10^{14})$.
只需要二
对正整数$n$作质因数分解,并记$f(n)$为将所有质因数均替换为$2$时的新乘积;此外记$f(1)=1$。
例如,$90 = 2\times 3\times 3\times 5$,将质因数替换后得$2\times 2\times 2\times 2 = 16$,因此$f(90) = 16$。
记$\displaystyle S(N)=\sum_{n=1}^{N} f(n)$。已知$S(10^8)=9613563919$。
求$S(10^{14})$。