Problem 711
Binary Blackboard
Oscar and Eric play the following game. First, they agree on a positive integer $n$, and they begin by writing its binary representation on a blackboard. They then take turns, with Oscar going first, to write a number on the blackboard in binary representation, such that the sum of all written numbers does not exceed $2n$.
The game ends when there are no valid moves left. Oscar wins if the number of $1$s on the blackboard is odd, and Eric wins if it is even.
Let $S(N)$ be the sum of all $n \le 2^N$ for which Eric can guarantee winning, assuming optimal play.
For example, the first few values of $n$ for which Eric can guarantee winning are $1,3,4,7,15,16$. Hence $S(4)=46$.
You are also given that $S(12) = 54532$ and $S(1234) \equiv 690421393 \pmod{1\ 000\ 000\ 007}$.
Find $S(12\ 345\ 678)$. Give your answer modulo $1\ 000\ 000\ 007$.
二进制黑板
奥斯卡和埃里克正在玩游戏。首先,他们共同选择一个整数$n$,然后将其二进制表示写在黑板上。然后,由奥斯卡先行,两人轮流在黑板上写上一个数的二进制表示,同时要求所有写在黑板上的数之和不能超过$2n$。
当不能够再写任何数时,游戏结束。若游戏结束时黑板上的$1$的数目为奇数,则奥斯卡获胜,若为偶数则埃里克获胜。
在双方都采用最优策略的情况下,记$S(N)$为在$n \le 2^N$的范围内埃里克能够保证获胜的$n$之和。
例如,最小的几个埃里克能够保证获胜的$n$分别是$1,3,4,7,15,16$。因此$S(4)=46$。
已知$S(12) = 54532$,$S(1234) \equiv 690421393 \pmod{1\ 000\ 000\ 007}$。
求$S(12\ 345\ 678)$并将你的答案对$1\ 000\ 000\ 007$取余。