Problem 714
Duodigits
We call a natural number a duodigit if its decimal representation uses no more than two different digits. For example, $12$, $110$ and $33333$ are duodigits, while $102$ is not.
It can be shown that every natural number has duodigit multiples. Let $d(n)$ be the smallest (positive) multiple of the number $n$ that happens to be a duodigit. For example, $d(12)=12$, $d(102)=1122$, $d(103)=515$, $d(290)=11011010$ and $d(317)=211122$.
Let $\displaystyle D(k)=\sum_{n=1}^k d(n)$. You are given $D(110)=11\ 047$, $D(150)=53\ 312$ and $D(500)=29\ 570\ 988$.
Find $D(50\ 000)$. Give your answer in scientific notation rounded to $13$ significant digits ($12$ after the decimal point). If, for example, we had asked for $D(500)$ instead, the answer format would have been $2.957098800000e7$.
双字数
如果一个自然数的十进制表示使用了不超过两种不同的数字,则称这个数为双字数。例如,$12$、$110$和$33333$都是双字数,而$102$则不是。
可以证明,任何自然数都存在一个为双字数的倍数。记$d(n)$为$n$的正倍数中最小的双字数。例如,$d(12)=12$,$d(102)=1122$,$d(103)=515$,$d(290)=11011010$,$d(317)=211122$。
记$\displaystyle D(k)=\sum_{n=1}^k d(n)$。已知$D(110)=11\ 047$,$D(150)=53\ 312$,$D(500)=29\ 570\ 988$。
求$D(50\ 000)$,并将你的答案用科学计数法表示,保留$13$位有效数字(也即小数点后$12$位)。例如,若我们要求的答案是$D(500)$,则答案应当写作$2.957098800000e7$。