Problem 715
Sextuplet Norms
Let $f(n)$ be the number of $6$-tuples $(x_1,x_2,x_3,x_4,x_5,x_6)$ such that:
- All $x_i$ are integers with $0 \leq x_i < n$
- $\gcd(x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2,\ n^2)=1$
Let $\displaystyle G(n)=\displaystyle\sum_{k=1}^n \frac{f(k)}{k^2\varphi(k)}$
where $\varphi(n)$ is Euler’s totient function.
For example, $G(10)=3053$ and $G(10^5) \equiv 157612967 \pmod{1\ 000\ 000\ 007}$.
Find $G(10^{12})\bmod 1\ 000\ 000\ 007$.
六元范数
记$f(n)$为满足以下条件的$6$元组$(x_1,x_2,x_3,x_4,x_5,x_6)$的数目:
- 所有$x_i$均为$0 \leq x_i < n$内的整数
- $\gcd(x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2,\ n^2)=1$
记$\displaystyle G(n)=\displaystyle\sum_{k=1}^n \frac{f(k)}{k^2\varphi(k)}$
其中$\varphi(n)$代表欧拉总计函数。
例如,$G(10)=3053$,$G(10^5) \equiv 157612967 \pmod{1\ 000\ 000\ 007}$。
求$G(10^{12})\bmod 1\ 000\ 000\ 007$。