Problem 722
Slowly converging series
For a non-negative integer $k$, define
$$E_k(q) = \sum\limits_{n = 1}^\infty \sigma_k(n)q^n$$
where $\sigma_k(n) = \sum_{d \mid n} d^k$ is the sum of the $k$-th powers of the positive divisors of $n$.
It can be shown that, for every $k$, the series $E_k(q)$ converges for any $0<q< 1$.
For example,
$E_1(1 - \frac{1}{2^4}) = \mathrm{3.872155809243e2}$
$E_3(1 - \frac{1}{2^8}) = \mathrm{2.767385314772e10}$
$E_7(1 - \frac{1}{2^{15}}) = \mathrm{6.725803486744e39}$
All the above values are given in scientific notation rounded to twelve digits after the decimal point.
Find the value of $E_{15}(1 - \frac{1}{2^{25}})$.
Give the answer in scientific notation rounded to twelve digits after the decimal point.
缓慢收敛级数
对于非负整数$k$,记
$$E_k(q) = \sum\limits_{n = 1}^\infty \sigma_k(n)q^n$$
其中$\sigma_k(n) = \sum_{d \mid n} d^k$表示$n$的所有正约数的$k$次幂之和。
可以证明,对于所有$k$和任意$0<q< 1$,级数$E_k(q)$始终收敛。
例如,
$E_1(1 - \frac{1}{2^4}) = \mathrm{3.872155809243e2}$
$E_3(1 - \frac{1}{2^8}) = \mathrm{2.767385314772e10}$
$E_7(1 - \frac{1}{2^{15}}) = \mathrm{6.725803486744e39}$
上述取值均以科学计数法表示并保留小数点后十二位。
求$E_{15}(1 - \frac{1}{2^{25}})$的值,以科学计数法表示并保留小数点后十二位。